Copy
"Neuroprosthetics are Hot, Hansel!"
View this email in your browser

DIY Neuroprosthetics

"A new generation of students has access to 3D printers and other Maker technology..."

I was speaking recently to one of our colleagues at Temple University about a project several of his students were working on, and he said something that really struck me, "these students are the first generation to have grown up with 3D printers in their schools, some even in their basements. They know how to use these and other maker tools, and it's changing education,"

He's right - every year now, we see more and more schools with Maker Spaces, 3D printers, DIY Electronics, and time set aside for creative, scientific projects. These students are already outpacing the old standards and this phenomenon certainly heralds a bright future!

The project we were discussing was a multi-channel neuroprosthetic that his students were developing with 3D modeling software, a 3D printer, and Backyard Brains tools! Check it out below:

A new trend? Students develop Neuroprosthetics, start Student Organization

This past summer, rising sophomore Morgan R., of Temple University pursued a summer project: with the help of one of her professors, she began the process of developing an affordable, 3D printed Neuroprosthetic powered by the Backyard Brains SpikerShield. What started as a fun summer project grew when she started bringing her friends and classmates on board. Thanks to their interdisciplinary connections, they realized they had the opportunity to make something out of the project and started a Neuroprosthetics Organization at the university, with the aim to develop and donate affordable prosthetics to those of different ability who could benefit from assistive technology.

Their work was made possible thanks to the Creative Arts, Research, and Scholarship (CARAS) program, a funding opportunity at Temple for undergraduates which supports undergraduate creative and scholarly projects.
They began with the single channel Muscle SpikerShield Bundle, but thanks to their grant funding, upgraded their design to allow for multi-channel control, then implementing the Muscle SpikerShield Pro!
As you can see above, the students' development involves a lot of trial and error as they work on functionally mimicking the movement of their prosthetics' fingers. They are making great progress, and we are excited to share updates from them as their work continues over the school year!

Not just University Students...

K12 students are developing their own prosthetics and devices too!

It's not just university students developing Neuroprosthetics and assistive neuro technologies! Here are a few examples of MS and HS students who have developed their own devices using Backyard Brains kits.
This prosthetic grabber was made with a simple servo motor and is strong enough to grip and lift a can of sparkling mineral water! Now nothing will stop anyone from enjoying their bubbles.
This is a great example of a functional prosthetic model - by combining our kits with Lego Mindstorms, the students created a doll that would mimic another students kick by recording from their leg.
This student combined his VEX robotics kit with a Muscle SpikerShield to create his NeuroClaw!

Planning an 8th Grade DIY Neuroprosthetics Lab

A successful Donors Choose is making this DIY lab possible for a Michigan Teacher

Ms. Farkas has big plans for her 8th graders this year: continuing their experience with DIY neuroscience from last year, she is branching into the world of prosthetics! Following a successful Donors Choose, she is now planning a unit where groups of students will all be responsible to design and create devices which will be controlled by their nervous systems!

She describes it best:

My Project

This year, we want to continue my students' Neuroscience journey! With the help of the Backyard Brains Muscle SpikerShield Kits, we plan to conceptualize, research, design, build and control our own Neuroprosthetics. Through collaboration with the team at Backyard Brains, we are piloting a project aimed at middle school students!

We're excited to update you on the results of her class projects!

Required Kit:
Muscle SpikerShield / Pro

Develop your own Neuroprosthetics using the Arduino based Muscle SpikerShield or Muscle SpikerShield Pro!
Muscle SpikerShield in the Store
6-Channel Pro Kit in the Store

Will Wharton

Consider the Aesthetics of Neuroprosthetics

Questions? Email me!

Facebook
Twitter
Google Plus
LinkedIn
YouTube
Copyright © 2018 Backyard Brains, All rights reserved.


Unsubscribe from Backyard Brains