Copy
View this email in your browser
MIT Joint Program on the Science and Policy of Global Change
September 27, 2021
CONTACT: Mark Dwortzan (dwortzan@mit.edu)

 

News Release

MIT Joint Program in News & Media

 

New ‘risk triage’ platform pinpoints compounding threats to U.S. infrastructure

Modeling tool showcases emerging MIT Joint Program research focus on multi-sector dynamics

Image: Hurricane Teddy hits the United States (Source: Severe Weather Europe)

Cambridge, MA, September 27, 2021—Over a 36-hour period in August, Hurricane Henri delivered record rainfall in New York City, where an aging storm-sewer system was not built to handle the deluge, resulting in street flooding. Meanwhile, an ongoing drought in California continued to overburden aquifers and extend statewide water restrictions. As climate change amplifies the frequency and intensity of extreme events in the United States and around the world, and the populations and economies they threaten grow and change, there is a critical need to make infrastructure more resilient. But how can this be done in a timely, cost-effective way?

An emerging discipline called multi-sector dynamics (MSD) offers a promising solution. MSD homes in on compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in infrastructure and managed resources.

At the Massachusetts Institute of Technology, the Joint Program on the Science and Policy of Global Change has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the U.S. In a two-hour webinar on September 15, Joint Program researchers presented an overview of the program’s MSD research toolset and its applications.  

MSD and the risk triage platform
“Multi-sector dynamics explores interactions and interdependencies among human and natural systems, and how these systems may adapt, interact and co-evolve in response to short-term shocks and long-term influences and stresses,” said Joint Program Deputy Director C. Adam Schlosser, noting that such analysis can reveal and quantify potential risks that would likely evade detection in siloed investigations. “These systems can experience cascading effects or failures after crossing tipping points. The real question is not just where these tipping points are in each system, but how they manifest and interact across all systems.”

To address that question, the program’s MSD researchers have developed the MIT Socio-Environmental Triage (MST) platform, now publicly available for the first time. Focused on the continental United States, the first version of the platform analyzes present-day risks related to water, land, climate, the economy, energy, demographics, health and infrastructure, and where these compound to create risk hotspots. It’s essentially a screening-level visualization tool that allows users to examine risks, identify hotspots when combining risks, and make decisions about how to deploy more in-depth analysis to solve complex problems at regional and local levels. For example, MST can identify hotspots for combined flood and poverty risks in the lower Mississippi River basin, and thereby alert decision-makers as to where more concentrated flood-control resources are needed.

Successive versions of the platform will incorporate projections based on the Joint Program’s Integrated Global System Modeling (IGSM) framework of how different systems and stressors may co-evolve into the future and thereby change the risk landscape. This enhanced capability could help uncover cost-effective pathways for mitigating and adapting to a wide range of environmental and economic risks.  

MSD applications
Five webinar presentations explored how Joint Program researchers are applying the program’s risk triage platform and other MSD modeling tools to identify potential tipping points and risks in five key domains: water quality, land use, economics and energy, health, and infrastructure. 

Joint Program Principal Research Scientist Xiang Gao described her efforts to apply a high-resolution U.S. water-quality model to calculate a location-specific, water-quality index over more than 2,000 river basins in the country. By accounting for interactions among climate, agriculture and socioeconomic systems, various water-quality measures can be obtained ranging from nitrate and phosphate levels to phytoplankton concentrations. This modeling approach advances a unique capability to identify potential water-quality risk hotspots for freshwater resources.

Joint Program Research Scientist Angelo Gurgel discussed his MSD-based analysis of how climate change, population growth, changing diets, crop-yield improvements and other forces that drive land-use change at the global level may ultimately impact how land is used in the U.S. Drawing upon national observational data and the IGSM framework, the analysis shows that while current U.S. land-use trends are projected to persist or intensify between now and 2050, there is no evidence of any concerning tipping points arising throughout this period.  

Joint Program Research Scientist Jennifer Morris presented several examples of how the risk triage platform can be used to combine existing U.S. datasets and the IGSM framework to assess energy and economic risks at the regional level. For example, by aggregating separate data streams on fossil-fuel employment and poverty, one can target selected counties for clean energy job training programs as the nation moves toward a low-carbon future. 

“Our modeling and risk triage frameworks can provide pictures of current and projected future economic and energy landscapes,” said Morris. “They can also highlight interactions among different human, built and natural systems, including compounding risks that occur in the same location.”  

Joint Program research affiliate Sebastian Eastham, a research scientist at the MIT Laboratory for Aviation and the Environment, described an MSD approach to the study of air pollution and public health. Linking the IGSM with an atmospheric chemistry model, Eastham ultimately aims to better understand where the greatest health risks are in the U.S. and how they may compound throughout this century under different policy scenarios. Using the risk triage tool to combine current risk metrics for air quality and poverty in a selected county based on current population and air-quality data, he showed how one can rapidly identify cardiovascular and other air-pollution-induced disease risk hotspots.

Finally, Joint Program research affiliate Alyssa McCluskey, a lecturer at the University of Colorado, Boulder, showed how the risk triage tool can be used to pinpoint potential risks to roadways, waterways and power distribution lines from flooding, extreme temperatures, population growth and other stressors. In addition, McCluskey described how transportation and energy infrastructure development and expansion can threaten critical wildlife habitats.

Enabling comprehensive, location-specific analyses of risks and hotspots within and among multiple domains, the Joint Program’s MSD modeling tools can be used to inform policymaking and investment from the municipal to the global level.

“MSD takes on the challenge of linking human, natural and infrastructure systems in order to inform risk analysis and decision-making,” said Schlosser. “Through our risk triage platform and other MSD models, we plan to assess important interactions and tipping points, and to provide foresight that supports action toward a sustainable, resilient and prosperous world.”

This research is funded by the U.S. Department of Energy’s Office of Science as an ongoing project.

The webinar can be viewed here.

The MIT Joint Program on the Science and Policy of Global Change is working to advance a sustainable, prosperous world through scientific analysis of the complex interactions among co-evolving, interconnected global systems. To help nations, regions, cities and the public and private sectors confront critical challenges in future food, water, energy, climate and other areas, the MIT Joint Program’s integrated team of natural and social scientists produces comprehensive global and regional change projections under different environmental, economic and policy scenarios. These projections help decision-makers to assess impacts, and the associated costs and benefits of potential courses of action.

globalchange.mit.edu
MITGlobalChange
MITGlobalChange
© 2021 MIT Joint Program on the Science and Policy of Global Change, All rights reserved.


unsubscribe <<Email Address>> from this list     subscription preferences     forward this email

Email Marketing Powered by Mailchimp